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EXECUTIVE SUMMARY 
 
1.  A large number of seabird colonies have been designated as Special Protection Areas (SPAs) 

in the UK due to the international or national importance of their breeding seabird 
populations. However, to date, the associated marine foraging grounds of these seabirds have 
not been designated. While this requirement has long been recognised, standard 
methodologies for assessing the precise boundaries of foraging grounds for designation are 
still being developed. 

 
2. The aim of this work was to identify and implement the most suitable approach for modelling 

the at-sea foraging distribution of Sandwich Terns Sterna sandvicensis breeding in the North 
Norfolk Coast SPA, using data collected on the species’ foraging locations from that SPA and 
associated environmental datasets. This will aid Natural England in the identification of a 
possible extension to the North Norfolk Coast SPA, and also inform on the Joint Nature 
Conservation Committee’s anticipated UK-wide approach for identifying marine extensions, 
or additional areas, to breeding seabird colony SPAs. 

 
3. Here, we initially reviewed the suitability of different modelling approaches to be applied to 

two breeding Sandwich Tern colonies in North Norfolk: Blakeney Point and Scolt Head, for 
two types of tern data collected on this species at sea, namely (1) ‘presence-only’ visual 
tracking data of individual breeding birds and (2) boat-transect data which can be used to 
estimate abundances or densities.  

 
4. We proposed two methodologies that should be used for both tracking and transect datasets 

to produce probability of occurrence surfaces representing the foraging distributions of 
Sandwich Terns off the North Norfolk Coast: mixed-effect General Additive Models 
(GAMMs) and Maximum Entropy (MaxEnt). These methods were selected on the basis of 
suitability of the techniques for the data in question, and successful documented application 
of these techniques in similar circumstances. For both approaches, the breeding colony at 
Blakeney Point was initially modelled. These results were then applied to the data from the 
Scolt Head colony, for model validation and to assess predictive accuracy. For further cross-
validation, the reverse approach was then also undertaken. 
 

5. For the boat-transect data, foraging locations of Sandwich Terns were recorded, which can 
provide information on both the presence-absence of foraging terns, and tern abundance or 
density estimates. Hence an abundance surface from GAMMs and a probability of occurrence 
surface from MaxEnt were produced. These were compared to the equivalent foraging 
probability surface produced from the tracking data where birds were recorded foraging. We 
also produced probability surfaces from GAMMs using all the transect data. Transect data 
encompassed a portion of potential non-breeders/failed birds whereas tracking data was for 
breeding birds only, thus caution is needed when interpreting the results.  
 

6. A third approach, Multi-Adaptive Regression Splines (MARS), was initially recommended 
for trial analyses; however, eventual time constraint limitations prevented this technique 
being tested.   
 

7. Both GAMMs and MaxEnt approaches were applicable for the tracking datasets. However, 
comparison of AUC showed that models varied in their predictive ability; this was most 
evident for the GAMMs. Using all the data, the most important predictor variables of 
occurrence were: distance to colony and depth for MaxEnt and distance to colony, salinity 
and depth for binomial GAMMs (where birds present = 1 and absent = 0).  
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8. GAMMs worked less well than MaxEnt for the transect dataset, proving a poor fit for the data 

and severely under-predicting the distribution of foraging areas. MaxEnt provided a better set 
of predictions for the transect data, but overall MaxEnt performed better for the tracking than 
the transect data.  
 

9. Despite the poorer model fit of GAMMs compared to MaxEnt, comparisons between the two 
approaches using foraging locations from both datasets revealed that both predicted similar 
areas of occurrence.  
 

10. These results suggest that modelling habitat association of Sandwich Terns can be used to 
identify potential areas for inclusion within an SPA colony-extension. The same models 
could be applied and tested for Sandwich Tern data elsewhere in the UK. 
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1. INTRODUCTION 
 
A large number of seabird colonies have been designated as Special Protection Areas (SPAs) in the 
United Kingdom due to the international or national importance of their breeding seabird populations. 
However, to date, the associated marine foraging grounds of these seabirds have not been designated. 
While this requirement has long been recognised, standard methodologies for accurately assessing the 
boundaries of foraging grounds for designation are still being developed. 
 
The Sandwich Tern Sterna sandvicensis is a feature of 19 SPAs in the UK (Stroud et al. 2001). 
Several years worth of data have been collected on the at-sea foraging locations of birds breeding at 
colonies at Scolt Head and Blakeney Point, within the North Norfolk Coast SPA. These data have 
been collected by Econ Ecology in order to assess the impact on the terns of proposed offshore wind 
farms. Similar data have also been collected by Econ Ecology for Common Terns Sterna hirundo also 
breeding within the North Norfolk Coast SPA and Little Terns Sternula albifrons breeding at the 
Great Yarmouth North Denes SPA. 
 
The marine SPA team of the Joint Nature Conservation Committee (JNCC) have further undertaken 
boat-based visual tracking of breeding terns of various species from various colonies around the UK. 
In addition to these data, further information on the at-sea locations of terns from several colonies 
around the UK has been collected through transect surveys of seabirds conducted for studies 
addressing the environmental impacts of proposed offshore wind farms. 
 
Radio-tracking data have previously been used to suggest seaward extensions to SPAs for rafting 
Manx Shearwaters Puffinus puffinus in the UK (Wilson et al. 2009). While the data available for terns 
have also provided great detail of the foraging locations used by terns from the particular locations 
studied and could similarly be used to suggest seaward extensions to those particular SPAs, the 
foraging distributions of terns around the rest of the UK coast are much less well understood.  
 
There is thus a need for a standard approach that can accurately describe tern foraging distributions 
where these are known and which can therefore, with some degree of confidence, be used to predict 
likely tern foraging distributions where these are not known and so be used to describe areas around 
the UK worthy of statutory designation by Natural England and the other country agencies. 
 
To meet this need, JNCC have an ongoing programme (currently up to the end of 2012) of fieldwork, 
data collation and analysis that will inform the development of such an approach. As part of this 
programme, JNCC have recently started investigating the potential use of habitat-association 
modelling approaches for predicting the foraging distributions of breeding terns. This approach will 
ultimately lead to the identification of those at-sea areas around the coasts of the UK that constitute 
the most suitable territories for designation, either as extensions or additional areas to existing SPAs 
with tern interest features. 
 
The aim of this work is to identify and implement the most suitable approach for modelling the at-sea 
foraging distribution of Sandwich Terns breeding in the North Norfolk Coast SPA, using the data 
collected on the species’ foraging locations from that SPA and associated environmental datasets. 
This will not only help Natural England in the identification of a possible extension to the North 
Norfolk Coast SPA, but also inform on JNCC’s anticipated UK-wide approach for identifying marine 
extensions to breeding seabird colony SPAs. 
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Here, we initially review the suitability of different modelling approaches for the two types of tern 
distribution data collected to date, i.e. a) ‘presence-only’ visual tracking data of individual breeding 
birds and b) boat-transect data (which can be assessed as presence only, presence/absence, or as 
densities) (Chapter 2). We then applied the most suitable modelling approaches decided upon in this 
review to produce and compare probability of occurrence and abundance surfaces describing the 
foraging distribution of Sandwich Terns off the North Norfolk Coast. This analysis was based on a) 
presence-only tracking data and b) boat-transect data (Chapter 3). A summary of the findings and 
associated conclusions is provided in Chapter 4.  
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2.  CHAPTER 2: REVIEW OF MODELLING TECHNIQUES 
 
2.1 Introduction: Datasets Available 
 
An increasing number of studies have examined the environmental and oceanographic variables that 
determine the at-sea distributions of seabirds, with increasing use of spatial statistical methods 
(Tremblay et al. 2009). A number of statistical approaches exist that are potentially suitable for the 
modelling of the tracking data and the boat-transect data available for Sandwich Terns from North 
Norfolk. This literature review aims to assess the suitability of these approaches so that the most 
suitable techniques can be identified and subsequently used to model the datasets. The resultant 
models will be used to produce probability or abundance surfaces describing the foraging locations of 
Sandwich Terns off the North Norfolk coast using presence-only tracking data and boat-based 
transect data, which can be treated as abundance or presence-absence data. 
 
2.1.1  Boat-transect Data 
 
Between 2004 and 2008 the area surrounding the North Norfolk Coast was the focus of a number of 
boat based surveys undertaken to inform Environmental Impact Assessments (EIAs) for proposed 
offshore wind farms. Surveys were carried out between May and June in the Lincs and Docking Shoal 
wind farms and June to August in the LID and Race Bank wind farms. During this time, a number of 
systematic transects were surveyed to provide information on species abundance and distributions.  
 
Boat-based methods survey a predefined transect, recording species into distance bands out to 300m, 
following standard protocols (Camphuysen et al. 2004). Thus, observations of birds are recorded as 
the boat progresses. One assumption of all the modelling approaches is that data points are 
independent. However, it is likely that these data will not be independent, e.g. because several 
foraging locations are recorded for the same bird and birds may have individual foraging preferences.  
If this structure of the data is ignored, then this would directly violate the assumption of 
independence. Often this lack of independence is tested by examining spatial autocorrelation 
(exogenous and endogenous) in the data. Exogenous factors include extrinsic factors (climate, soil 
type etc) that if left unaccounted for, could lead to a more similar occurrence probability in 
neighbouring sites, due to specific autocorrelation patterns in these extrinsic factors (see Dorman 
2006). Their inclusion within models can reduce residual spatial autocorrelation (e.g. Warren et al., 
2005). Endogenous spatial autocorrelation arises due to the biology of the species under consideration 
(e.g. dispersal, interspecific interactions, disturbance) (Dormann 2006), and can be expected to 
operate at smaller spatial scales (Guisan & Thuiller, 2005). Ignoring these sources of spatial 
autocorrelation can lead to either biased parameter estimates, or overly optimistic standard errors 
(Keitt et al., 2002), the latter of which being important for species distribution models when model 
results are then used for predicting species distributions, e.g. for environmental change scenarios 
(Dormann 2006). In this study, endogenous and exogenous spatial autocorrelation may exist, and 
since the models could be used to predict distribution of terns elsewhere, its consideration is of prime 
importance. Furthermore, since a range of processes may contribute to spatial autocorrelation once 
also cannot assume that spatial autocorrelation is a small-scale problem, that can simply be overcome 
by resampling data at a coarser spatial scale (Fortin & Dale, 2005).  
 
Typical treatment of at-sea boat survey data can include adjustments for detectability for birds on the 
sea surface (Camphuysen et al. 2004), accounting for declining detectability with increasing distance 
(Buckland et al. 2001). However, distance correction is only recommended for birds recorded on the 
sea surface (Camphuysen et al. 2004), since oscillations in wave heights mean that visibility is more 
severely affected for sea observations than for flight observations. For these reasons, adjustments for 
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detectability have not previously been carried out for terns, almost all of which will have been flying 
as they forage from the air, only occasionally sitting on the surface (Allcorn et al. 2003).   
 
The position of the boat was recorded every 500m, approximately equal to every two minutes. The 
time encountered and behaviour of all terns was recorded. Snapshot counts were completed every 
500m and each tern observation was recorded as occurring within a snapshot or not. These snapshot 
counts are conducted to avoid an overestimate of bird numbers in flight, and are conducted by 
observers recording birds both over the transect and within a 300m distance ahead of the ship 
(Camphuysen et al. 2004). Birds recorded in the scan are typically used to calculate densities (when 
this is the objective of the survey). Density assessments make an assumption that there is no net 
inflow and outflow within the study area. In particular, data collected between snapshot counts may 
overestimate the density due to the flux of flying birds through the area with time as the boat sails 
through it (Allcorn et al. 2003). Therefore, these observations between the snapshots shouldn’t 
strictly be used as count data, but can be used (with the snapshots) as presence-absence data. 
Therefore, we used all data for presence-absence models. However, for abundance we tested models 
excluding those data in-between snapshots for assessments. However, when snapshots were used in 
isolation the dataset was greatly reduced (e.g. Docking Shoal 301/1327), thus we had insufficient data 
available to allow this. Therefore, we chose to include all data for assessment of abundance, but with 
a caveat to acknowledge the issue of flux stated above. We believe this constituted a sound approach. 
Distance bands (corresponding to A: <50 m, B: 50-100 m, C: 100-200 m, D: 200-300 m and E: >300 
m) were still recorded within the data but as stated, detectability was not incorporated here due to 
flying birds. Each bird was also recorded as being within one of four height bands (0 m, 0-20 m, 20-
120 m and >120 m).  
 
If, after accounting for exogenous spatial autocorrelation, the residuals from the model or original 
data are autocorrelated (i.e. perhaps related to endogenous autocorrelation), then this may indicate 
that data are spatially pseudo-replicated and p-values may be spuriously small. One approach 
commonly used is to check for such autocorrelation is Morans I, and can be conducted for a number 
of Monte Carlo permutations based on a weight matrix of k-nearest neighbours, using the size of the 
study area to give a radius. Variograms and correlograms are typically used to check for strong 
signals of autocorrelation, and can also provide information about an appropriate radial distance over 
which spatial autocorrelation may act. Following discovery of autocorrelation, it can then be 
incorporated into models, through appropriate correlation structures; for instance, in the statistical 
software package R using package ‘spdep’), or alternatively, including an autocovariate in the model 
as an independent variable, reflecting the values of response variable at neighbouring sites within a 
radius (Dorman et al. 2007).  
 
Analyses to obtain general area distribution can be conducted irrespective of habitat covariates. These 
methods can be useful to understand general distribution of the raw data and have been used 
previously to define extensions to breeding seabird colony SPAs through targeted boat-survey effort 
near to seabird colonies (McSorley et al. 2003). Identification of behaviours adjacent to breeding 
SPAs enabled simple area use to be defined for those birds likely to be from that SPA, i.e. bathing, 
preening and display (McSorley et al. 2003; Wilson et al. 2009). Semi-variograms can then be used to 
provide the basis for interpolation, and kriging is a geostatistical method that expresses the 
autocorrelation described by the variogram to generate a grid of interpolated values (e.g. Bellier et al. 
2010). In turn, this can then be used to obtain a density surface. Simple kernel density or minimum 
convex polygons may also be useful initial assessments.   
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2.1.2  Tracking Data 
 
During the 2006 and 2007 breeding seasons, 69 individual Sandwich Terns were visually tracked 
from the Sandwich Tern colonies at Scolt Head Island (20 birds in 2006, 16 birds in 2007) and 
Blakeney Point (33 birds in 2007) (Perrow et al. 2006, 2011). For each trip, individuals were 
followed by boat from their breeding colony out to sea. GPS locations were recorded at least once per 
minute and at every location at which the bird dived for food. Individual data regarding the sex, age 
and breeding status of tracked individuals were not available.  
 
A number of assumptions are common to all statistical approaches of the analysis of tracking data. 
These are that: 1. The tracked individuals are representative of the population as a whole. This may be 
violated if boats are more likely to follow birds from a single part of the colony, or those flying at a 
certain height. 2. The tracking of birds does not influence their behaviour. This is not an unrealistic 
assumption as a number of studies have shown that terns are relatively unaffected by the disturbance 
associated with boats (Garthe & Hüppop 1999; Skov & Durinck 2001; Perrow et al.2006,  2011). 3. 
The detectability of birds is equal in all habitats. There is a chance that birds may be 'lost' when 
tracked further out to sea in rougher environments – but here, survey were conducted in sea states of 
Beaufort scale 3 or less and data were not biased by these fair-weather conditions because Beaufort 
Scale ≥4 only occurred on 17% days during the study period (Perrow et al. 2006, 2011). The 
assumption that visually-tracked birds are lost “randomly” is also reasonable given the consistency of 
the above water marine environment. Likewise, in very shallow areas, boats may not be able to follow 
birds, however, as boats were able to track birds as they left the breeding colony such issues were not 
encountered in this study.  Assuming birds are lost randomly, and not just further from the colony, 
then there will also be no issue of bias towards any one habitat. 
 
2.1.3  Covariates 
 
A variety of covariates have been collated by JNCC to describe the physical habitat within which the 
Sandwich Terns forage. These include basic information such as the distance from shore of the 
colony, likely to be related to the energetic costs incurred by the birds during foraging. Data such as 
salinity, water temperature and sediment type, have all been shown to be useful proxies for sandeel 
abundance (Cyrus 1991, Becker et al. 1993, Bertolero et al. 2005, Paiva et al. 2008, Schwemmer 
2009). Data regarding the topography of the environment are also available, including the depth and 
slope of the seabed and the extent to which individual areas have easterly or northerly aspects. These 
variables are likely to relate to seabed sediment characteristics and the level of suspended sediments 
within the water column. In Chapter 3, we present output of the modelling procedures chosen, 
including the selection of variables based on ecological importance.  
 
2.1.4 Autocorrelation 
 
Autocorrelation here refers to the proximity of observations in space which are not independent, and 
therefore not a result of the process of interest, and it can lead to spurious results, due to 
pseudoreplication.  There are a number of ways that autocorrelation can arise in these data.  Firstly, in 
the tracking data, an individual bird is followed and foraging locations noted (Perrow et al. 2006, 
2011).  Successive foraging locations for the same individual are not independent, because they are 
likely to be spatially close to each other. In addition, the foraging preferences of an individual in 
relation to environmental covariates may represent a smaller range than the foraging preferences of 
the population, and all the foraging locations of an individual will therefore not be independent.  In 
the line transect data, individuals are not uniquely identifiable, and therefore the same individual may 
be recorded twice in two locations in close proximity on a transect, again violating the assumptions of 

BTO Research Report No. 582  March 2011 13



independence. A variety of options are available to accommodate autocorrelation explicitly in the 
modelling and some of these are discussed below in sections 2.2.1 and 2.2.2. 
 
For tracking data, there is a slim possibility that the same individual could have been tracked more 
than once, which would further reduce independence in the data. Here, we consider each individual 
tracked to be a random sample from all the individuals in the colony, thus the potential of tracking the 
same individual twice is not an issue, since this would ordinarily be expected occasionally in random 
sampling. Additionally, the probability of double-tracking occurring in this study is fairly low, given 
the large number of birds at the colony.  
 
2.1.5  Selecting the Correct Model Type 
 
The stated objective here is to implement the most suitable modelling approach for at-sea foraging 
distributions of Sandwich Terns in relation to environmental datasets. To meet this objective, the 
appropriate output could take a form of either a presence/absence or density surface model predicting 
where terns are more likely to be recorded foraging in relation to the habitat variables. Thus, in 
choosing an appropriate model, consideration needs to be given not only to the available data, but 
also the output desired. 
 
The data here can be broadly delineated into the three main categories: (1) Presence-only data; (2) 
Presence-absence data; (3) Count data (abundance and density). As such, response variables require 
particular treatment under the most appropriate statistical method. The use of boat-based surveys 
means that the resultant data can be treated as all three, allowing a broader range of modelling 
techniques to be considered. Tracking data are essentially presence-only data and therefore can be 
treated to create presence-absence data through insertion of pseudo-absences (see section 3). The 
response variables available for each dataset are given in Table 1. 
 
Table 2.1 Response variables per type of data available for Sandwich Terns 
 
Response variable Boat-transect Visual tracking 
Presence-only yes yes 
Presence-absence yes requires pseudo-absences 
Count(density and abundance) yes no 
 
To represent overall distribution, models could be conducted on all of the data, but to indicate likely 
areas of importance for feeding, foraging locations could be modelled. The latter may therefore be 
best to prioritise.  
 
2.2  Methods: Potential Statistical Approaches  
 
Several modelling approaches are common to the analysis of both tracking and transect data, because 
as seen from Table 2.1, both can be modelled as presence-only and presence/absence data. However, 
the two datasets are not equivalent, even when reduced to the same data type. Technically the same 
methods may be applied to the two datasets, although the results may be indicating different things, if 
the data are not treated carefully. For instance, a model of the foraging locations of the tracking data 
(which is presence only) will elucidate the environmental covariates which affect where terns forage. 
Care would need to be taken when applying the same model to the transect data (when reduced to 
presence only), since this includes foraging and non-foraging (i.e. travelling/searching) locations. 
Thus, both transect and tracking data will need to be filtered in the same manner before comparisons 
under the same statistical technique can be made. Ultimately, if there are a lack of data in the transect 
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data, then environmental covariates will be highlighted that affect where terns forage and those in 
flight/searching behaviours, which would then require different interpretation.  
 
Many traditional modelling approaches rely on knowledge not only of where a species is found, but 
also where it is absent. However, a common feature of some ecological datasets is that only presence 
data are available. Consequently, a variety of techniques have been developed to model this type of 
data, for instance, MaxEnt and regression tree approaches.  
 
Here, we list available statistical methods in approximately increasing order of complexity. Since 
both types of data can be used in most techniques, where applicable we discuss the merit of the 
techniques to the application of both tracking and transect data. 
 
2.2.1  Simple Hypothesis Testing 
 
Conventional hypothesis testing techniques such as ANOVA (Analysis of Variance), Chi-squared 
tests and Wilcoxon tests can be used to test whether the use of certain habitats is more or less than 
would be expected by chance, given the proportion of available habitats (e.g. Skov & Durinck 2000; 
Roycroft et al. 2007; Alldredge & Ratti 1992). These analyses require separating habitats into discrete 
classes, which can be difficult to produce for continuous environmental variables. Furthermore, the 
number of categories can impact the results (Aarts et al. 2008) and may not represent important 
biological habitat distinctions for the species under study (Aarts et al. 2008; Wakefield et al. 2009). 
Proportions of available habitats are also normally defined in an anthropocentric way, being derived 
from arbitrary limits of study areas or other non-biological boundaries, although they can be defined 
from estimates of home range (Aebischer et al. 1993) or in other ways (e.g. Aarts et al. 2008).  
 
The proportion of data points within each habitat, are assumed to represent the proportion of time that 
the species spend foraging there. One problem which arises when dealing with proportions of time, is 
that preference for one habitat, automatically leads to apparent avoidance of others, i.e. there is non-
independence in the data, because the proportions sum to one. Such problems are noticeable for 
tracking datasets in particular, but may also apply to transect data if one considers that to be a 
snapshot of the distribution which continually moves around the study area. Compositional Analysis 
deals with the problem of the unit sum and re-configures the data (Aitchison 1986). Statistical 
analyses (e.g. MANOVA (Multivariate Analysis of Variance)) can then be conducted on the 
transformed data (Aebischer et al. 1993).  
When using basic hypothesis testing there are two ways of dealing with spatial and temporal 
autocorrelation for both transect and tracking data. Data can be removed from the analysis such that 
the remaining data points are not serially correlated (Swihart & Slade 1985), or p-values can be 
adjusted to take account of the degree of autocorrelation (Legendre 1993).  
 
2.2.2  Spatial Methods 
 
Spatial methods, as we are referring to them here, are spatially explicit analyses of tracking locations. 
Several methods can highlight hotspots in distributions of locations, e.g. GAMs (Wood 2006) or 
kernel methods, but do not fit relationships with environmental variables. Shaffer et al. (2009) used 
Utilization Distribution kernels to characterise spatiotemporal patterns of habitat use. These methods 
do not in themselves quantify habitat preference, but variation in habitat use. However, this approach 
could be used to calculate habitat preference (e.g. Wood et al. 2000), and as a preliminary analysis to 
help inform relevant covariates for the modelling procedure (e.g. Olivier & Wotherspoon 2006a; 
Olivier & Wotherspoon 2006b).  
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Poisson point process modelling assumes the locations are generated by a point process and therefore, 
unlike logistic regression, this approach to modelling does not require pseudo-absences. As the 
number of pseudo-absences increases, however, the results from a logistic regression converge to 
those from a point process model (Warton & Shepherd 2010). It is possible to conduct point process 
modelling in standard software, but there is an assumption that the points are independent.  
 
2.2.3  Regression Modelling Approaches 
 
General Additive Models (GAMs) are widely used in habitat modelling (Clarke et al. 2003; Moisen 
& Frescino 2002; MacLeod et al. 2008), including for seabirds at sea data, both for raw counts and 
densities (Huettmann & Diamond 2006). GAMs are extensions of General Linear Models (GLMs) 
that facilitate inclusion of semi-parametric smoothing functions, allowing for greater flexibility in the 
shape of the response curve to the predictor variable (Hastie & Tibshirani 1990). However, GLMs too 
have been used in various instances (Yen et al. 2004; Canadas et al. 2005; MacLeod et al. 2008; 
Valavanis et al. 2008). GAMs in particular are useful because they avoid making untested 
assumptions on relationships between predictors and the response (Wood 2006), but may produce 
wide confidence limits on predictions if using the models to predict beyond the range of values 
included in the model. These methods are available in a wide variety of packages such as SAS and R. 
 
Leading on from the above GAM and GLM approaches, another option is to adopt a two-stage 
approach (two-step delta model), defining both a presence absence part of the model, with a binomial 
error distribution, and a density part, with the desired distribution, which can be then multiplied 
together to give predictions at new predictor values. These are known as hurdle models and are useful 
when data are zero inflated (Potts & Elith 2006). Such approaches have been used for seabird 
abundance in colony based studies, in which the principles (i.e. spatial distribution of data) are the 
same as those at-sea studies (Scott et al. 2009). Likewise, such an approach was taken by Heinänen et 
al. (2008) in modelling occurrence and abundance of Arctic Terns Sterna paradisaea in southwest 
Finland at breeding colonies. Here, GAMs were used to model both presence-absence (binomial) and 
abundance. Although several options exist for dealing with overdispersion (above, e.g. Welsh et al. 
1996, Martin et al. 2005), hurdle models can also be fitted to allow presence-absence and positive 
parts of the model defined separately, given different processes that may drive each (Potts & Elith 
2006), and hurdle models could be better when the data is both zero inflated and highly overdispersed 
(Heinanen & von Numers 2009). However, such extreme overdispersion was not encountered in this 
current study.  
 
2.2.3.1 Application to Transect Data 
 
Both GAMs and GLMs have been used to model boat-based transect data in the past. Yen et al. 
(2004) used GLMs to produce a spatially explicit large scale distribution model of the Marbled 
Murrelet Brachyramphus marmoratus. Similarly, Huettmann & Diamond (2006) modelled the 
distribution of a variety of seabird species in relation to depth, sea-surface temperature and salinity 
using GAMs.  
 
A variety of model families would be possible for modelling densities under GAMs and GLMs, 
including corrections for overdispersion using quasi-distributions, negative binomial distributions, 
zero-inflated models, or modelling more extreme overdispersion by adjusting error-variance 
relationships (Welsh et al. 1996, Martin et al. 2005; Potts & Elith 2006; Zuur et al. 2007; Heinänen et 
al. 2008). However, another family, the Tweedie family is also available; this family is a form of 
exponential distribution that allows the user greater flexibility in defining this error variance 
relationship (Tweedie 1984; Smyth 1996; Smyth & Verbyla 1999), potentially allowing for a better-
fitting model.  
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Boat-based transect data can be treated as both presence/absence and abundance (or as a density) 
(Table 1), and thus GLMs and GAMs can be produced using both model types, using a binomial 
family for presence/absence, and Poisson, negative binomial, Tweedie, or zero inflated models for 
densities. Given the likely output could be a density surface within the defined study area, and thus 
requires a within-study variation in density assessment, snapshot counts were investigated. However, 
too few data were available for this assessment, and thus all data are included with a caveat that 
outputs may be slightly inflated due to flux within transects as the boat moves (see section 2.1). 
Furthermore, terns are recorded in transects in flight rather on the sea surface, therefore distance 
correction will not be applied (Allcorn et al. 2003; Camphuysen et al. 2004). Furthermore, boat-
transect data can also be treated as presence only, thus making the data applicable to approaches such 
as MaxEnt (see below). 
 
2.2.3.2 Application to Tracking Data  
 
With continuous environmental covariates, and a grid of space within which the data fall, logistic 
regression can be carried out. The response is a ‘1’ if there is a foraging location within each grid cell, 
and ‘0’ otherwise. Such data treatment is also applicable to transect data for presence/absence. 
However, this violates assumptions of independence because individual points are not independent, 
and the data themselves are not independent in space or time.  
 
The correlations within individuals can be accommodated using mixed effects models, where each 
individual bird is treated as a random effect; likewise, cross-validation as part of the model selection 
procedure can also help to limit spurious relationships that can otherwise arise due to serial 
autocorrelation (Aarts et al. 2008). Alternatively, serial autocorrelation can be dealt with by using 
repeated measures, and treating successive tracking locations as serially correlated repeated measures 
on the same individual (Fieberg et al. 2010). This approach has been carried out in a number of recent 
tracking studies for a number of species (e.g. Lewis et al. 2002; Hamer et al. 2009; Thaxter et al. 
2010). More details of this approach are given in Chapter 3. 
 
Tracking data provides information about the locations of individual birds, but no explicit information 
about where birds are not. It therefore only contains information about presences and not absences, 
and often data of this type is modelled with pseudo-absences which are used to fit relative proportions 
of presences. Modelling presence-only data with pseudo-absences can improve the predictive power 
of the model (Wisz & Guisan 2009), but may introduce very small bias into the results (Keating & 
Cherry 2004). There are several ways to select pseudo-absences, which then enable the use of logistic 
models with a presence/pseudo-absence response variable, and measurements of environmental 
variables at those locations as predictor variables. Pseudo-absences can be selected randomly from a 
delimited space, for example a home-range, regardless of how the ‘availability’ of different regions in 
space to species is increasingly considered (e.g. Aarts et al. 2008; Beyer et al. 2010). For central 
place foragers, such as terns during the breeding season (Gaston 2004), availability can simply be 
defined as a function of distance from the breeding colony or other factors (Aarts et al. 2008; 
Matthiopoulos 2003; Fieberg et al. 2010). Distance from the colony can also be included as a 
covariate, which may account for inaccurate specification of the availability surface (Aarts et al. 
2008). The number of pseudo-absences can also impact on the results, and the model may be 
considered to have converged when an increase in the number of pseudo-absence points does not 
result in a change in the results (Aarts et al. 2008). Aarts et al. (2008) state that the number of pseudo-
absences required to reach this point varies between datasets, but in their dataset twice as many 
pseudo-absence points as presence points were required.  
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Johnson et al. (2006) propose an alternative solution of using use-availability (Patil & Rao 1978) 
designs instead of using pseudo-absences. Calculating the likelihood and optimal model using this 
approach is not straightforward (Lele & Keim 2006; Lele 2009), although can be more powerful 
(Beyer et al. 2010). 
 
2.2.4  Regression Tree Approaches 
 
The use of tree structured methods is becoming increasingly popular in the analysis of wildlife-habitat 
relationships (e.g. Andersen et al. 2000; Karels et al. 2004; Schwartz et al. 2006; Davidson et al. 
2010). These methods make no assumptions about either the distribution of the data or the 
relationships between the independent and dependent variables. Instead, the data are divided into a 
hierarchical sequence of groups based on the predictive power of the dependent variables. The results 
are then presented in the form of a tree diagram, which are typically easy to understand and interpret. 
Furthermore, these approaches are growing in popularity as they are often insensitive to outliers, 
irrelevant predictors are seldom selected and missing data can be modelled (Elith et al. 2008). Such 
approaches have been applied successfully to the analysis of seabirds at sea data in species including 
the Marbled Murrelet and Balearic Shearwater Puffinus mauretanicus (Yen et al. 2004; Oppel et al. in 
prep.). A variety of forms of regression tree are available, including Classification and Regression 
Trees (CART: De’ath & Fabricius 2000), Boosted Regression Trees (BRT: Schonlau 2005) and 
Random Forests (Brieman 2001).  
 
Classification and Regression Trees (CART) model a single response variable against one or more 
explanatory variables by repeatedly splitting the data. At each split the data are partitioned into two 
mutually exclusive groups, which are as homogenous as possible. The splitting procedure is then 
applied to each group separately. The objective of this analysis is to partition the response variable 
into homogenous groups, whilst minimizing the size of the resultant tree. However, a common 
criticism of CART is that it is highly dependent on the sample of training data used, and often it has 
difficulty in modelling smooth functions.  
 
Boosted regression trees (BRT) are an extension of CART that aims to improve model accuracy 
based on the idea that it is easier to find and average through many rough rules of thumb than to find 
a single, highly accurate prediction rule (Schapire 2003). The first step, as with CART, is to fit a tree 
that best explains the data. In subsequent steps, the model is updated to contain a tree fitted to the 
residuals of the preceding tree. This process is stagewise, rather than stepwise, so that the existing 
trees are left unchanged and only the fitted value for each observation is re-estimated to reflect the 
contribution of the newly added tree (Elith et al. 2008). The final model is a linear combination of all 
trees. However, this methodology is prone to mis-classification error, and the results can be difficult 
to interpret for larger trees. Despite these potential problems, it has been shown to outperform CART 
algorithms on a variety of datasets (Friedman et al. 2000). It has also been applied to the modelling of 
presence-absence data in the marine copepod Oithona similas and both the presence-absence and 
abundance of the Balearic Shearwater (Oppel et al. in prep.).  
 
Random Forest models use bootstrapped samples to construct a large number of trees (typically 500-
2000) (Breiman 2001; Prasad et al. 2006). Each tree is ‘grown’ from a randomized sample of the 
independent variables, in the manner outlined above. The results from all trees are then aggregated. 
Variable importance is evaluated based on how much worse predictions would be were the variable 
data to be permuted randomly. A key advantage of this approach is that the large number of trees 
makes generalisation errors extremely limited, thus making over-fitting impossible (Prasad et al. 
2006).  
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Regression Tree approaches have been shown to perform well in comparison to more traditional 
approaches such as GAMs and GLMs, and have successfully been applied to the analysis of seabird at 
sea data (De’ath & Fabricius 2000; Moisen & Frescino 2002; Munoz & Felicisimo 2004; Yen et al. 
2004; Prasad et al. 2006; Oppel et al. in prep.). Approaches such as Random Forests and BRT which 
are based on the construction of multiple trees are more effective than CART, which is based on a 
single tree. However, concerns remain about the ability of these approaches to fit smooth terms. 
 
2.2.5  Multi-Adaptive Regression Splines (MARS) 
 
Multi-Adaptive Regression Splines (MARS) is a technique that has been widely used in vegetation 
science (i.e. Moisen & Frescino 2002; Munoz & Felicisimo 2004; Leathwick et al. 2006; Prasad et al. 
2006, Elith & Leathwick 2007) and has recently been applied to animal ecology (i.e. Yen et al. 2004; 
Leathwick et al. 2006; Heinänen & von Numers 2009). MARS builds flexible regression models by 
fitting separate splines to distinct intervals of the predictor variables. The variables and the interval 
end points used are selected following an extensive search procedure utilising a special class of basis 
functions (Prasad et al. 2006). As with other methods, resulting outputs from MARS, as with other 
techniques, can be easily transferred to other computational environments, such as GIS (Leathwick et 
al. 2006; Elith & Leathwick 2007).  
 
Comparisons between MARS and other methodologies, such as CART, Logistic Multiple Regression 
and GAMS, show that MARS performs as well as, and more consistently than these techniques 
(Moisen & Frescino 2002; Munoz & Felicisimo 2004; Leathwick et al. 2006). Furthermore, MARS is 
capable of identifying a parsimonious set of environmental correlates of community composition, and 
robustly modelling species distributions in relation to these variables. 
 
2.2.6  Genetic Algorithm for Rule-set Prediction (GARP) 
 
Genetic Algorithm for Rule-set Prediction (GARP) models are based on occurrence only data with 
pseudo-absence data generated by randomly sampling points at which the species has not been 
detected (Stockwell & Noble 1992). Occurrence data are divided evenly into training data (for model 
development) and test data (for model evaluation). An iterative process of rule selection is used. 
Initially, a method is selected from a range of possibilities and applied to the training data to develop 
a rule. This rule is then applied to the test data and pseudo-absence points and the change in 
predictive accuracy from one iteration to the next is used to decide whether the rule should be 
adopted.  
 
However, comparison between GARP and other models, such as BIOCLIM, GLMs and Maximum 
Entropy, suggests that GARP has a relatively low predictive ability (Stockman et al. 2006; Peterson 
et al. 2007), although this view has been challenged by others (McNyset & Blackburn 2006). Direct 
comparisons between GARP and Maximum Entropy found that whilst AUC statistics are broadly 
similar for both approaches, GARP had a tendency to substantially over-predict species’ distributions 
(Phillips et al. 2006; Peterson et al. 2007).  
 
2.2.7  Maximum Entropy (MaxEnt) 
 
Maximum Entropy (MaxEnt) models were developed in the field of Statistical Mechanics, but their 
use has been growing in popularity in ecology. MaxEnt is a general purpose method for making 
predictions or influences from incomplete information (Jaynes 1957). MaxEnt aims to estimate a 
target probability distribution by finding the probability distribution that is most spread out or 
uniform (i.e. has maximum entropy). It does this subject to a set of restraints representing our 
incomplete knowledge. The available information about the target distribution is presented as real-
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valued variables called ‘features’, representing environmental variables. However, as with other 
models, it can run into problems predicting values in areas where the range of the environmental 
variables is outside that observed within the original study area (Phillips et al. 2006), but 
compounded by the fact it is an exponential model. Despite this, MaxEnt approaches have proven 
very effective at predicting species’ distributions (Phillips et al. 2006; Shipley et al. 2006 Kumar & 
Stohlgren 2009), and are capable of performing well in spite of small sample sizes (Wisz et al. 2008). 
 
2.2.8  Ecological Niche Factor Analysis (ENFA) 
 
Ecological Niche Factor Analysis (ENFA) was proposed by Hirzel et al. (2002) as a way to 
circumvent problems associated with ‘false absences’. False absences can occur in areas where a 
species is present but not recorded, or in areas with suitable habitat which have yet to be colonised. . 
ENFA has been used successfully to model the at-sea distribution of Northern Gannet (Skov et al. 
2008). However, Skov et al. (2008) highlight concerns over using ENFA within a predictive 
framework as the methodology does not provide any information on causal relationships between 
species distributions and individual parameters. Furthermore, ENFA is highly sensitive both to the 
computational algorithms chosen and to the input order of variables (Brotons et al. 2004).  
 
2.2.9  Multivariate Analysis 
 
Eigen value-type methods such as Principal Component Analysis (PCAs) don’t involve model 
selection, and are thus a more objective description of habitat preferences (Calenge et al. 2005). 
However, as they are hard to interpret, they are not as suitable for forecasting or predicting.  
 
2.2.10  Hierarchical Bayesian Methods 
 
Bayesian models are a growing field in all areas of ecology, including habitat preference modelling 
(e.g. Jonsen et al. 2005; Patterson et al. 2008). The hierarchical model structure can easily incorporate 
point location observation error and deal with the correlated data structure, which are both inherent in 
tracking studies (Fieberg et al. 2010). Currently Bayesian methods are computationally expensive and 
require substantial specialist statistical knowledge.  
 
2.2.11  Movement and Habitat Models 
 
Many studies now incorporate the modelling of habitat preference into a model of animal movements 
(e.g. Christ et al. 2008; Smouse et al. 2010). The model of habitat preference can thus become 
dynamic (e.g. Dalziel et al. 2008) and depend on the spatially immediately available habitats. State-
space models are very useful for modelling interactions between animals and their habitat, including 
movement (e.g. Jonsen et al. 2005; Eckert et al. 2008), and machine-learning techniques such as 
Artificial Neural Networks also enable the fitting of complicated models (Dalziel et al. 2008). 
However, as is the case with hierarchical Bayesian methods, these models can be computationally 
intensive, and require substantial statistical knowledge.   
 
2.3 Conclusions and Recommendations 
 
2.3.1 Boat-based Data 
 
A variety of techniques are available for the analysis of the boat-based data, which can be treated as 
presence only, presence-absence or abundance data. However, where absence data are available, 
approaches, such as GAMs or GLMs, which account for both presence and absence can perform 
better than those that account for presence only, for example Regression Trees, GARP, MARS, 
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ENFA and MaxEnt (Brotons et al. 2004; Meynard & Quinn 2007), although there are concerns over 
the transferability of such models (Randin et al. 2006). Data from boat-based transects are likely to be 
auto-correlated, overdispersed and zero-inflated. Within GAMs in particular, there are well 
established protocols capable of accounting for these issues. Consequently, the distribution of the data 
obtained from the boat-based transects may, potentially, drive the type of model used. 
 
2.3.2 Tracking Data 
 
In contrast with the boat-based transect data, the tracking data must be treated as presence only. A 
wide variety of methodologies are available for analyzing presence-only data, and the optimal 
approach is less clear than that for dealing with presence-absence data. Regression type approaches 
have been used, with pseudo-absences generated within the data, constrained, for example, to be 
within an animal’s home range to improve the predictive power of the model (i.e. Wisz & Guisan 
2009). Alternatives to regression type approaches include regression trees, GARP, MARS, ENFA, 
MaxEnt and a number of spatial, multivariate and Bayesian approaches. Of these techniques, some 
can be computationally expensive or produce results that are hard to interpret. Regression trees are 
widely used, but have difficulty in fitting smooth terms to the data. They may also produce 
complicated trees which are hard to interpret. Methodologies such as ENFA and GARP have been 
shown to have relatively low predictive ability in comparison to GLMs. In contrast, both MARS and 
MaxEnt have been shown to work well in comparison with other methodologies (Moisen & Frescino 
2002; Leathwick et al. 2006; Phillips et al. 2006; Kumar & Stohlgren 2009; Munoz & Felicisimo 
2004).  
 
2.3.3 Considerations for Analysis 
 
A number of issues must be borne in mind in potential analysis of both datasets. First and foremost, 
the observed distribution, both from the tracking data and also from the transect data, may not 
necessarily be an accurate representation of the habitat requirements for Sandwich Terns. Occupancy 
of an area does not necessarily represent selection of that area (Beyer et al. 2010). This issue is 
particularly pertinent for the transect data and care needs to be taken to distinguish between areas that 
are actively selected for foraging, and those that are used incidentally, for example whilst individuals 
are in transit between the breeding colony and foraging areas. Furthermore, with regards to the 
tracking data, it is not possible to distinguish between the species’ realised niche, the optimal area in 
which a species is found, and the species’ fundamental niche, the total area in which the habitat 
matches the species requirements some of which is not used as it is sub-optimal or subject to 
pressures such as predation (Guisan & Thuiller 2005). Consequently, models are likely to represent 
the habitats optimally selected by Sandwich Terns, rather than the full range of habitats at their 
disposal. This may not necessarily be transferable between sites. Furthermore, models assume static 
habitat selection through time. This may not necessarily be the case with habitat preferences varying 
with weather and throughout the breeding season. 
 
When comparing the distributions obtained from the boat-transect and tracking studies, it is important 
to consider the scale at which the studies were conducted (Bellier et al. 2010). The boat-transect data 
will refer more generally to overall habitat use, whilst the tracking data refers specifically to finer-
scale foraging locations. Furthermore, the transect data are likely to include a number of birds which 
are either failed or non-breeders and birds that are on passage to or from other colonies. 
Consequently, direct comparisons between these data must be treated with caution. 
 
For both sets of models, colinearity amongst the explanatory variables is likely to be an issue. To 
counteract this, pair-wise plots and variance inflation factors will be used to help decide which 
variables to include. Ultimately, those with the best a priori reason for affecting distribution should 
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be included in models. It is possible to calculate orthogonal linear combinations of variables, for 
example through the use of PCA, however, this can lead to difficulties in interpretation.  
 
2.3.4 Recommended Modelling Approach 
 
Table 2 provides an overview of the various methods reviewed here and their applicability to the 
datasets available. Ultimately there is no one correct modelling approach. Therefore, final chosen 
methods are selected based on their established application in the literature, their applicability to the 
datasets in question and their use of algorithms that are not computationally intensive.  
 
2.3.4.1 Tracking Data 
 
Two methodologies are taken forward in Chapter 3 to produce probability of occurrence surfaces 
representing the foraging distributions of Sandwich Terns off the North Norfolk Coast, based on the 
presence-only tracking data: mixed-effect General Additive Models (GAMMs) and Maximum 
Entropy (MaxEnt). Mixed effects models were chosen because data were essentially repeated 
measurements either on individual birds or proposed wind farm areas (see Chapter 3 for more 
details). For MaxEnt, background locations from the covariate grid are randomly sampled and the 
conditional density of covariates at presence locations is compared to the conditional density of 
covariates at these background locations (Elith et al. 2011). For GAMMs, similar pseudo-absences 
will be generated, but not as an integrated part of the modelling.  Covariates are modelled in relation 
to the presence and pseudo-absence data. For each approach, data from the colony at Blakeney Point 
will initially be modelled.  
 
A third approach, Multi-Adaptive Regression Splines (MARS), was initially recommended for trial 
analyses; however, eventual time constraint limitations prevented this technique being tested. 
 
2.3.4.2 Transect Data 
 
The boat-transect data are likewise also modelled in Chapter 3 using both MaxEnt and GAMM 
frameworks. These data can be treated as presence-only, and thus for the MaxEnt approach, data are 
treated in a similar manner to tracking data. For GAMMs, abundance information are modelled 
directly to produce a density probability surface, while counts are also converted to provide 
presence/absence data so that a binomial logistic-regression GAMM could be applied. Where absence 
data are available, GAMMs which account for both presence and absence data perform better than 
approaches that account for presence only. Our analyses thus use a subset of transect data for foraging 
birds only, to produce probability of occurrence surfaces that may be comparable to the probability 
surface from the tracking data using foraging-only locations.  
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Table 2.2. Summary of the approaches reviewed, together with advantages and disadvantages of each approach. 
 

Approach Summary Advantages Disadvantages 
1. General Linear 
Models (GLMs) 

Fits linear slopes to a response variable, with link function 
to define specific error-variance relationships  Not computationally intensive; simple output Parametric constraints, lack of flexibility extracting more 

complex relationships between predictor and response 
2. General Additive 
Models (GAMs) 

Extensions of GLM, that include semi-parametric smoothing 
functions 

Not computationally intensive; simple output; can fit 
smoothed terms unlike GLM 

Can over-fit model; sensitive to over-smoothing, thus 
producing unrealistic ecological patterns  

3. Classification 
and Regression 
Trees (CART) 

Models response against predictor(s) by repeatedly splitting 
a starting "tree", and partitioning into homogenous groups 
whilst minimizing the size of the resultant tree 

Copes with any data structure; has simple classification 
form; does not vary when variables are transformed; robust 
to outliers 

Dependent on training data; overly sensitive to tree structure; 
has difficulty in modelling smoothed functions; variable 
combinations not used; optimal tree splits may not be globally 
optimal. 

4. Boosted 
regression trees 
(BRT)  

Initial tree to explain response~predictor(s) relationship; 
further stagewise steps update to the residuals of previous 
tree - new parameters reflect contribution of the newly-
added tree 

Can handle different types of predictors; no need for data 
transformation; fits complex non-linear relationships; 
outperforms CART on a variety of datasets 

Prone to mis-classification error and thus predictive 
performance for individual trees; results difficult to interpret 
for larger trees 

5. Random Forest 
Bootstrapped samples to construct multiple trees - each 
‘grown’ from a randomised sample of independent 
variables; results of all trees are aggregated 

Many trees makes generalisation errors limited, and over-
fitting less likely; trains rapidly; can identify 
outliers/anomalies easily; handling of highly dimensional 
data; good for clustering/classifying 

Computationally intensive; cannot handle large numbers of 
irrelevant features alongside groups of entropy-reducing 
decision trees 

6. Multi-Adaptive 
Regression Splines 
(MARS) 

Builds flexible regression models by fitting separate splines 
to distinct intervals of the predictor variables 

Ideal where relationships are non-linear; suitable where 
many variables interact; is non-parametric; out-performs 
CART and logistic methods; handles large datasets well 

Simpler parametric techniques may be preferred if data are 
linear with lack of multi-colinearity and interactions; 
parameter confidence limits not calculated directly; cross-
validation needed for model evaluation 

7. Genetic 
Algorithm for Rule-
set Prediction 
(GARP) 

Generates pseudo-absences, and uses an iterative process 
of rule selection applied to a training dataset, using a 
change in predictive accuracy over iterations to decide to 
adopt the rule  

Easily comprehendible; use of multiple models adds to 
robustness; can deal with a range of relationships in data; 
can handle correlated variables 

As a stochastic method GARP needs averaging of many 
lengthy runs of algorithm; GARP vs GLMs and Maximum 
Entropy, suggests low predictive ability, or over-predicts 
species distributions;  

8. Maximum 
Entropy (MaxEnt)  

Estimates target probability distribution by finding the one 
most spread out or uniform, subject to restraints 
representing incomplete knowledge 

Proven very effective at predicting species’ distributions; 
clean, effective model fits; easy to interpret; can be 
extended to handle sample biases; can handle small 
sample sizes 

As an exponential model, it can give particularly large 
predicted values where the range of the environmental 
variables is outside that of the observed 

9. Ecological Niche 
Factor Analysis 
(ENFA) 

Circumvents problems of ‘false absences’ that can occur 
where a species is present but not recorded, or in areas yet 
to be colonised 

Species niches and potential distribution identified within a 
landscape - useful for tracking data of marine species that 
have non-random distribution  

Predictive limitations due to lack of causal relationships 
between distributions and parameters. Sensitive to algorithms 
chosen, and order of input variables 

10. Spatial 
methods 

Explicit analyses of tracking locations - e.g. utilisation 
distribution kernels to characterise spatio-temporal variation 
in habitat use and habitat preference 

Poisson point process modelling does not require pseudo-
absences 

Point processes have assumption that the points are 
independent 

11. Multivariate 
Analysis 

Eigen value-type methods such as Principal Component 
Analysis (PCAs), looking for single components that explain 
general patterns of multiple variables 

Don’t involve model selection, thus a more objective 
description of habitat preferences Hard to interpret, not as suitable for forecasting or predicting 

12. Hierarchical 
Bayesian Methods Hierarchical Bayesian model structures Can easily incorporate point location observation error, and 

deal with the correlated data structure Computationally intensive 

13. Movement and 
Habitat Models 

Modelling of habitat preference into a dynamic model of 
animal movements (e.g. State-space models, Artificial 
Neural Networks) 

State-space models useful for modelling interactions 
between animals and their habitat; Machine-learning 
techniques enable fitting of complicated models 

Computationally intensive 
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3.  MODELLING THE HABITAT USE OF SANDWICH TERNS 
 
3.1 Introduction 
 
In the UK, breeding seabird species are protected at their colonies in Special Protection Areas (SPAs), 
designated under the EU Birds Directive (79/409/EEC, updated as 2009/147/EC). However, this 
directive also places an obligation on the UK government to identify marine SPAs for rare, vulnerable 
and migratory birds.  
 
Sandwich Terns are a designated feature of the North Norfolk Coast SPA, the colonies at Blakeney 
Point and Scolt Head hosting an estimated 3457 pairs on an annual basis (Stroud et al. 2001). 
Sandwich Terns have a limited capacity to switch their diet to make use of alternative prey items 
(Furness & Tasker 2000; Stienen et al. 2000) and demonstrate distinct preferences in their use of 
foraging areas (Becker et al. 1993). By modelling habitat use by terns in the offshore environment 
surrounding the North Norfolk Coast SPA we seek to make recommendations about how best to 
define the marine foraging grounds of Sandwich Terns and thus inform Natural England’s 
identification of a possible extension to the North Norfolk Coast SPA, and JNCC’s anticipated UK-
wide approach for identifying marine extensions to breeding seabird colony SPAs. 
 
3.2 Methods 
 
3.2.1 Sandwich Tern Data 
 
Sandwich Tern distributional data from the North Norfolk Coast come from two sources.  
 
Tracking data were obtained by following terns on foraging flights from their breeding colony and 
recording foraging activity using GPS, following the methodology of Perrow et al. (2006, 2011). In 
total 69 individuals were tracked from the Scolt Head and Blakeney Point breeding colonies in 2006 
and 2007. Here, we use those foraging locations of birds for further modelling.   
 
To investigate the predictive power of each methodology, initially, models were developed for the 
foraging locations identified from each colony individually. These models used environmental data 
extracted from the surrounding area using minimum area polygons developed using ArcGIS. Each 
model was cross-validated by applying it to the other colony and comparing the resultant values at 
each point both to the observed data and to the values predicted by the model for that colony. Finally, 
a “global” model was developed to incorporate foraging locations from both colonies in relation to 
the study area as a whole. It is these global models that would be put forward for use in making 
predictions for foraging locations from additional colonies. 
 
In addition to this tracking dataset, a series of boat-based transect surveys were undertaken as part of 
the Environmental Impact Assessments for the Race Back, Docking Shoal, LID and Lincs wind 
farms. Surveys were carried out using standard methodology (Camphuysen et al. 2004). In total, data 
were available from 147 surveys across the four windfarms between 2004 and 2007. Data were 
insufficient to consider wind farm areas individually, consequently data for all four wind farm were 
combined in a “global” model. For transect data, we tried modelling both data for foraging birds only 
and all birds together, but these approaches gave very similar results. Therefore, we only present 
results relating to foraging birds. Resultant models were applied to making predictions for the study 
area as a whole. 
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3.2.2 Environmental Data 
 
A range of environmental variables were available for inclusion in the analysis (Table 3.1.). These 
variables were pre-processed by JNCC to a 1 km² level and covered aspects of the topography, 
chemistry and temperature of the study area. 
  
3.2.3 Generalised Additive Mixed Models 
 
Both transect and tracking datasets were modelled using Generalised Additive Mixed Models 
(GAMMs). The finest scale for which habitat data were available was 1 km², consequently bird 
observations were summed to the 1 km² level prior to analysis. Habitat data were extracted for each 1 
km² within the study area using GIS and then matched with observation data using the R 2.11.0 
statistical package (R Development Core Team 2010).  
 
For both datasets, data were modelled using GAMMs; for boat transects, we modelled count data with 
a Poisson distribution (consistent with plots of the data), summing the number of observations per 1 
km square, and as presence-absence data with a binomial distribution. Whilst when modelling with 
count data from transects it is preferable to use snapshot counts, in this instance, insufficient data 
were available to allow this. 
 
For tracking data, we modelled data as presence-only (and presence-absence). As data were repeated 
measurements either on individual birds or proposed wind farm areas, models included random 
effects for these variables. For transect data, wind farm nested within date was fitted as a random 
effect to account for the fact that data included repeated counts on multiple dates. For the tracking 
data, ‘individual’ was fitted as a random effect as data were repeated observations of individuals. As 
only presence data were available for the tracking data, pseudo-absences were generated by sampling 
1 km grid squares from the study area at a ratio of 2 pseudo-absences to every presence, following the 
methodology of Aarts et al. (2008). Initially, pseudo-absences were selected based on availability as 
function of distance from colony. However, the high concentration of foraging locations within 10 
km² of the breeding colony meant an insufficient area was available from which to generate pseudo-
absences. Consequently, pseudo- absences were drawn randomly from the appropriate area 
surrounding each colony. 
 
Forward selection, which adds predictor variables sequentially until no more additions have a 
significant effect on model fit, was used in final model selection. Cross - correlation plots were used 
to determine which environmental variables to include in models with a value of 0.7 taken as a cut-off 
point. Model residuals were assessed for autocorrelation. All models were fitted using the mgcv 
library in R (Wood 2006).  So that model fit could be comparable between MaxEnt and GAMMS, 
Area Under Curve of Receiver-Operator Characteristic Plot (AUC) values were calculated for the 
GAMMs using the ROCR package in R (Sing et al. 2009). However, this package does not enable the 
calculation of AUC for non-binary data, consequently no AUC values were calculated for the models 
of transect abundance data. The AUC value relates the true-positive rate from the model to the false 
positive rate, the higher the value, the better performing the model. 
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Table 3.1. Environmental variables available for modelling. 
 

Group Variable Source 

Depth (m) SeaZone  Digital Elevation Model 
Aspect Eastness1 SeaZone  Digital Elevation Model 
Aspect Northness2 SeaZone  Digital Elevation Model 

Topography 

Slope (⁰)3 SeaZone  Digital Elevation Model 
Chemistry Salinity (%)4 Holt (2006) 

Seabed Temperature (⁰C)5 Met. Office 
Temperature Stratification (⁰C)5 Holt (2006) 

Temperature 

Summer Front Frequency6 Miller et al. (2010) 
Wave Shear Bed Stress (N/m2)7 JNCC SeaMap 
Current Shear Bed Stress (N/m2)7 JNCC SeaMap 

Energy 

Sediment Type (coarse sediment, sand 
and muddy sand, mixed sediment, mud 
and sandy mud, rock or reef) 

British Geological Survey 
(DigSBS250) 

Distance to Shore (km) Nearest coastline identified from an 
Ordinance Survey high water 
polygon 

Features 

Distance to Colony (km) Nearest colony identified from 
JNCC tern colony maps 

 
1 Aspect from -1 south to +1 north;  2 Aspect from -1 west to +1 east; 3 incline between adjacent grid 
cells; 4 sea surface salinity in summer (%); 5seabed temperature, and surface to seabed temperature 
difference in summer; 6summer thermal front probability based on satellite observations of SST; 
7Tidal force stress  at seabed from waves and currents; Variables that varied temporally are averaged 
specific to the periods investigated. 
 
3.2.4 Maximum Entropy Models 
 
Maximum Entropy models for both transect and tracking datasets were constructed using MaxEnt 
3.3.3e (Phillips et al. 2004). For each model, twenty-five replicates were used for cross-validation. A 
jack-knife approach was used to measure variable importance. This looks at the predictive ability of 
models fit for each predictor variable alone, and for models fit for all predictor variables but missing 
out each one in turn. Initially full models, containing all variables, were fitted. Environmental 
variables with values outside of the range present within the training data can have a strong impact on 
subsequent predictions. Consequently, variables in which this was the case were not included within 
these models. Following this, variables which had the lowest permutation importance – the drop in 
the AUC value of the model when values of a variable are randomly permuted - and made the lowest 
overall percent contribution – the sum of the regularized gain from the addition of the relevant 
variable to each iteration of the training algorithm - to the model were dropped and the associated 
change in the Area-Under-Curve (AUC) of the receiver operating characteristic (ROC) curve was 
noted. The final models presented are those from which no more variables can be dropped without 
affecting the AUC value. 
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For the tracking datasets, individual models were initially constructed separately for the Scolt Head 
and Blakeney point colonies. For each colony 50 % of the data were set aside and used as test data 
whilst the other 50 % were used as training data. Models for each colony were then identified and 
used to predict the distribution of foraging locations surrounding the remaining colony. To determine 
the accuracy of these predictions, the strength of the correlation between the modelled and predicted 
values for each colony was measured. Following this, a model was constructed combining data from 
both colonies. In the first instance, the data from Blakeney Point were used as training data and the 
data from Scolt Head were used as test data.  For further cross-validation, the reverse approach was 
then also undertaken. 
 
A MaxEnt model was also constructed for the transect data. In this instance, data from Race Bank and 
LID were used as training data and data from Lincs and Docking Shoal were used as test data.  
 
3.3 Results 
 
As environmental data were only available at the level of 1 km², all bird observations were summed 
to this level. For the tracking data 33 birds were recorded feeding within 93 1 km² grid squares from 
Blakeney Point in 2007, 20 birds were recorded feeding within 71 1 km² grid square from Scolt Head 
in 2006 and 16 birds were recorded within 134 1 km² grid squares from Scolt Head in 2007 (Figure 
3.1a). During transect surveys, 520 birds were recorded feeding within 156 1 km² grid squares (Figure 
3.b).  
 
Prior to analyses, environmental datasets were assessed for correlation and spatial autocorrelation 
using cross-correlation plots and semi-variograms. Correlations were observed between salinity and 
temperature (r = 0.75), salinity and distance to coast (r = 0.76) and distance to coast and distance to 
colony (r = 0.70). Correlations between distance to colony and salinity and distance to colony and 
mean summer temperature were not significant. Environmental variables showed significant spatial 
autocorrelation over approximately 15 km and this was accounted for by using an exponential spatial 
autocorrelation term covering the appropriate area within subsequent models (Wood 2006; Pinheiro et 
al. 2009).  
 
3.3.1 Tracking Data 
 
3.3.1.1  Generalised Additive Mixed Models 
 
GAMMs based on tracking data performed reasonably well, with R² values ranging from 0.376 for a 
model covering both colonies in 2007, excluding distance to colony, to 0.648 for the model for the 
colony at Blakeney Point in 2007. Predictions arising from models tended to accurately differentiate 
between observed presences and generated absences (Figure 3.2). Despite this, there was a strong 
tendency to under-predict the probability of foraging birds being observed within the study area, 
particularly for birds from Scolt Head in 2006 (Figures 3.1 & 3.3). 
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      (a)      (b) 

 
 
Figure 3.1 (a) Foraging locations of tracked birds from the Scolt Head and Blakeney Point 

Sandwich Tern colonies in 2006 and 2007, bounded by study area and (b) Locations of 
Sandwich Terns recorded foraging during boat-based transect surveys of the Lincs, 
Race Bank, LID and Docking Shoal wind farm areas, bounded by study area. 
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Figure 3.2  Predicted values for observed foraging (1) and pseudo-absence (0) locations for the 
Sandwich Tern breeding colonies at Blakeney Point in 2007 and Scolt Head in 2006 
and 2007 plotted against predicted probability of occurrence of foraging birds from 
GAMMs built using the foraging locations for (a) the Blakeney Point colony in 2007 
(b) the Scolt Head colony in 2006 and (c) the Scolt Head breeding colony in 2007 
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   (a)      (b) 

 
    (c) 

 

Figure 3.3  Probability of Sandwich 
Tern foraging activity as 
predicted using a GAMM 
and data for terns from (a) 
Blakeney Point in 2007 (b) 
Scolt Head in 2006 and (c) 
Scolt Head in 2007 
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Three initial models were constructed, one for Blakeney Point in 2007, one for Scolt Head in 2006 
and one for Scolt Head in 2007. Of these, the best performing model was that for Blakeney Point in 
2007 with an R² of 0.648 and an AUC of 0.949. This model showed that the probability of foraging 
birds being observed declined as distance from the breeding colony increased (coeff.  -0.47 x 10-4 ±  
6.93 x 10-5, P < 0.0001) and increased in response to increased salinity (coeff. 1.27 ± 0.28, P < 
0.0001). Neither of these variables showed evidence of smoothing and were consequently fitted as 
linear terms. These models proved reasonably accurate at predicting observed foraging locations for 
terns from the Blakeney Point in 2007, with a mean probability of occurrence of 0.68 ± 0.31 for 
observed foraging locations (Figures 3.2a & 3.3a). In contrast, mean probabilities of 0.19 ± 26 and 
0.17 ± 0.23 for observed foraging locations of birds from the Scolt Head breeding colony were 
calculated for 2006 and 2007 respectively. 
 
The final model for Scolt Head in 2006 had an R² value of 0.412 and an AUC of 0.882. Again, in this 
case, the probability of foraging birds being observed showed a significant decline as distance from 
the breeding colony increased (coef. -1.48 x 10-4  ± 3.34 x 10-5, P < 0.0001) while the model also 
included a non-significant association with higher temperatures (coef. 1.92 ± 1.3, P = 0.14). Neither 
of these variables showed evidence of smoothing and were consequently fitted as linear terms. The 
predictive ability of this model was consistent across both colonies in both years, although probability 
of foraging birds being observed was under-predicted (Figures 3.2b & 3.3b) with mean probabilities 
of occurrence of 0.45 ± 0.23, 0.45 ± 0.25 and 0.46 ± 0.20 for observed foraging locations of birds 
from the Scolt Head breeding colony in 2006 and 2007 and from the Blakeney Point colony in 2007 
respectively.  
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Figure 3.4  Smoothed terms from Generalised Additive Mixed Model for Sandwich Tern Foraging 

locations from Scolt Head breeding colony in 2007.  
 
The final model for Scolt Head in 2007 had an R² of 0.397 and an AUC of 0.885. Again, the 
probability of foraging birds being observed showed a significant decline as distance from the 
breeding colony increased (edf 6.50, P <0.0001) and an association with salinity values of 33 - 33.5 
(edf 3.36, P < 0.0001) (Figure 3.4); a non-significant association was also observed with deeper water 
(coef. -0.0015 ± 0.017, P = 0.92). The predictive ability of this model was consistent between 2006 
and 2007 for the Scolt Head breeding colony with means of 0.37 ± 0.20 and 0.38 ± 0.20 of observed 
foraging locations of birds being correctly predicted for 2006 and 2007 respectively. However, a 
mean of just 0.19 ± 0.10 of observed foraging locations of birds from the Blakeney Point breeding 
colony in 2007 were correctly predicted (Figures 3.2c & 3.3c).  
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In the analysis of foraging locations using 2007 data from both the Scolt Head and Blakeney Point 
breeding colonies, two models were identified. The first model, which had the highest R² and AUC 
values, 0.466 and 0.887 respectively, showed a significant decline in the probability of foraging birds 
being observed as distance from the colony increased (edf 2.46, P < 0.0001) (Figure 3.5a). However, 
a mean probability of occurrence of only 0.47 ± 0.28 at observed foraging locations (Figures 3.6, 3.7).   
    (a)     (b) 

0 10000 30000 50000

-4
-2

0
2

4

Distance to Colony

Distance to Colony (m)

s(
di

st
co

lo
ny

,2
.4

6)

32.5 33.0 33.5 34.0 34.5

-1
0

-5
0

Salinity

Salinity

s(
sa

lin
os

gb
b,

3.
79

)

0.00 0.10 0.20 0.30

-1
0

-5
0

Temperature Stratification

Temperature Stratification

s(
st

ra
to

sg
b,

2.
34

)

 
 

Figure 3.5  Smoothed terms from Generalised Additive Mixed Models for Sandwich Tern 
Foraging locations from Scolt Head and Blakeney Point breeding colonies in 2007 with 
(a) Distance to colony as the only explanatory variable and (b) Distance to colony 
excluded from the model. 
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Figure 3.6  Predicted values for modelled presence (1) and pseudo-absence (0) data for Sandwich 

Tern foraging locations from the Blakeney Point and Scolt Head breeding colonies in 
2007 from models combining both datasets. The first model contained distance to 
colony as its only explanatory variable, whilst the second excluded distance to colony. 

 
Inclusion of additional explanatory variables failed to improve the predictive power of this model, or 
resulted in a singular convergence. Consequently, a second model, excluding distance from colony as 
an explanatory variable was fitted to the data. The resultant model had an R² of 0.376 and showed a 
significant association between the probability of foraging birds being observed and salinity levels of 
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around 33.0 – 33.5 (edf. 3.79, P = 0.0023) and with water exhibiting a lower level of temperature 
stratification (edf. 2.33, P = 0.0066) (Figure 3.5b). There was also a significant linear relationship 
indicating a preference for foraging within shallower water (coef. 0.06 ± 0.03, P = 0.0300). However, 
a mean of only 0.38 ± 0.24 of observed foraging locations of birds were correctly predicted. 
 

(a)                                                                (b) 

 
Figure 3.7  Probability of Sandwich Tern foraging activity as predicted using a GAMM for all 

foraging locations recorded during 2007 (a) with distance to colony as the only variable 
and (b) excluding distance to colony. 

 
 
3.3.1.2 Maximum Entropy 
 
MaxEnt models performed well with mean AUC values from 25 cross-validation replicates ranging 
from 0.925 (± 0.035) in the model using data from Scolt Head in 2007 to 0.979 (± 0.006) for a model 
using data from both colonies in both years. When models were applied across colonies, the resultant 
predicated values were fairly consistent (Figures 3.8). However, there was a slight tendency to over-
predict the distribution of foraging areas in comparison to the observed data (Figure 3.9). 
Temperature within the area used by the birds from Scolt Head was outside the range of the area used 
by birds from Blakeney Point. As such differences can unduly influence predictions, temperature was 
not included in the models for individual colonies; however, it was considered for inclusion in the 
model using data from both colonies. This was not the case for any other environmental variable. 
 
The final MaxEnt model using data from Blakeney Point in 2007 had a mean AUC value of 0.976 (± 
0.005). Distance to colony was highlighted as the most important variable (Table 3.2, Figure 3.10a). 
The probability of occurrence of foraging birds was highest within the first 1 km from the colony and 
declined steeply over the subsequent 10 km. At a distance of 30 km from the colony, the probability 
of encountering a foraging bird is close to zero. Depth and temperature stratification also had a strong 
influence on the distribution of foraging areas in this model, with probability of occurrence of 
foraging birds highest in areas with low levels of temperature stratification and in water less than 10 
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m deep (Table 3.2, Figure 3.10a). Predictions from this model applied to the Scolt Head area provided 
a high level of correlation with the predictions from the models for Scolt Head in both 2006 (r = 0.69) 
and 2007 (r = 0.51). There was however, a slight tendency to over-predict the distribution of foraging 
locations.  
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Figure 3.8  The correlation between the foraging probability of (a) Sandwich Terns at Scolt Head 

breeding colony in 2006 and 2007 predicted using the model for Blakeney Point in 
2007 and the foraging probability predicted using the models for Scolt Head breeding 
colony in 2006 and 2007 and (b) Sandwich Terns at Blakeney Point breeding colony in 
2007 predicted using the model for Scolt Head in 2006 and 2007 and the foraging 
probability predicted using the model for Blakeney Point breeding colony in 2007. 

 
 
The final MaxEnt models for foraging areas surrounding Scolt Head in 2006 and 2007 had mean 
AUC values of 0.952 (± 0.027) and 0.925 (± 0.035) respectively. Distance to colony was highlighted 
as the most important variable in both years (Table 3.2, Figures 3.10 b & c). Again, the probability of 
foraging birds being observed was highest within the first 1 km from the colony, with a sharp decline 
up to 10 km. The probability of foraging birds being observed remained between 0.1 and 0.2  between 
10 and 20 km from the breeding colony, before approaching 0 at distances in excess of 30 km. As 
with the model for Blakeney Point in 2007, depth was also important in this model, while for both 
years the model highlights a tendency for Sandwich Terns to forage over water that is less than 10 m 
deep. Current shear bed stress was identified as an important variable in the model for 2006 with a 
tendency for terns to forage in water where current shear bed stress was weak. A similar relationship 
was observed in the model for 2007, though this variable made a less significant contribution to the 
overall model. Predictions from these models applied to the Blakeney Point area provided a high level 
of correlation with the predictions from the model for Blakeney Point (Figure 3.8) – 0.71 and 0.67 for 
the 2006 and 2007 models respectively. Again however, there was a slight tendency to over-predict 
the distribution of foraging locations.  
 
The final MaxEnt model considering both colonies in both years had a mean AUC value of 0.979 (± 
0.006). Distance to colony was again highlighted as the most important variable with a steep decline 
in the probability of foraging birds being observed over the first 10 km (Table 3.2, Figure 3.11). 
Between 10 and 20 km the probability of foraging birds being observed was between 0.1 and 0.2, 
before falling to close to 0 at distance of more than 30 km. Other variables made a less significant 
contribution to the overall model (Table 3.2). However, of these variables, salinity and depth were the 
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most important, with the probability of foraging birds being observed highest in water with a depth of 
less than 10 m and a salinity value of around 33 (Figure 3.11). 
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      (a)      (b) 

 
   (c)      (d) 

 
Figure 3.9  Probability of occurrence of Sandwich Tern foraging  area based on predictions from 

the MaxEnt model of foraging locations from (a) Blakeney Point in 2007 (b) Scolt 
Head in 2006 (c) Scolt Head in 2007 and (d) Both colonies and both years  



 

(a) 

 
(b) 

 
(c) 

 
 
Figure 3.10  Mean response curves for each of the variables included in the final MaxEnt model for foraging locations of Sandwich Terns from 

(a) Blakeney Point in 2007 (b) Scolt Head in 2006 and (c) Scolt Head in 2007: Current Shear Bed Stress (current), Distance to 
Colony (dcolony), Depth, Frequency of Summer Thermal Fronts (sumfrontf), Wave Shear Bed Stress (wave), Temperature 
Stratification (strat), Slope. Red lines indicate mean value from 25 model replicates, blue lines indicate the standard deviation of 
these replicates. 
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Table 3.2  Relative contribution of explanatory variables to each MaxEnt model describing Sandwich Tern foraging locations from tracking 
data. 

1 The sum of the regularized gain from the addition of the relevant variable to each iteration of the training algorithm  

Blakeney Point 2007 Scolt Head 2006 Scolt Head 2007 All Track Data 
 

Percent 
Contribution1 

Permutation 
Importance2 

Percent 
Contribution1 

Permutation 
Importance2 

Percent 
Contribution1 

Permutation 
Importance2 

Percent 
Contribution1 

Permutation 
Importance2 

Current Shear 
Bed Stress 2.7 0.9 15.5 4.7 3.9 5.2 1.6 0.4 

Depth 17.1 2.1 10.1 23.5 3.5 2.9 6.4 1.1 

Distance to 
Colony 45.7 90.7 74.1 50.2 74.1 50.2 77.4 87.7 

Frequency of 
Summer Thermal 

Fronts 
2.4 0.4 12 5.7 8.1 23.3 1 0.5 

Salinity n/a n/a n/a n/a n/a n/a 4.4 2.4 

Slope 4.1 0.7 n/a n/a n/a n/a 2 0.5 

Temperature 
Stratification n/a n/a n/a n/a n/a n/a 3.8 1.6 

Wave Shear Bed 
Stress 7.3 4 4.3 3.4 4.4 18.5 3.3 5.8 

2 The drop in the AUC value of the model when values of a variable are randomly permuted



 

 
 
Figure 3.11  Mean response curves for each of the variables included in the final MaxEnt model for 

foraging locations of Sandwich Terns from the Blakeney Point and  Scolt Head 
breeding colony in 2007: Current Shear Bed Stress (current), Distance to Colony 
(colony), Depth, Salinity (salin), Slope, Temperature Stratification (strat), Frequency of 
Summer Thermal Fronts (sumfrontf), Wave Shear Bed Stress (wave). Red lines 
indicate mean value from 25 model replicates, blue lines indicate the standard deviation 
of these replicates. 

 
3.3.2 Transect Data 

 
3.3.2.1 Generalised Additive Mixed Models 
 
Using GAMMs, transect data were modelled both as presence-absence data with a binomial 
distribution and as count data with a Poisson distribution. When used for predictions, both models 
performed poorly (Figures 3.12 & 3.13). The binomial presence-absence model had an R² value of 
0.003 and an AUC value of 0.543 and the Poisson count model had an R² of 0.002.  
        (a)    (b) 
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Figure 3.12  Predicted values for (a) observed foraging (1) and non-foraging (0) and (b) observed n 

birds foraging / km² at locations within the Race Bank, Docking Shoal, LID and Lincs 
wind farm area survey transects. 
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When modelled as presence-absence data, the best model included distance to colony (edf. 7.73, P < 
0.0001) and seabed slope (edf. 3.57, P = 0.0002) as smoothed terms (Figure 3.14). The model 
indicated that foraging activity was most likely within areas that were no more than 10 km from the 
breeding colony, which had a slight slope (Figures 3.13a & 3.14). The mean probability of occurrence  
for observed presences and absences were 0.022 ± 0.015 and 0.014 ± 0.011 respectively (Figure 
3.12a) indicating that models were poor at differentiating areas in which Sandwich Terns were 
observed foraging from those in which they were not observed foraging 
 

    (a)      (b) 

 
Figure 3.13  Predicted (a) probability and (b) abundance of foraging Sandwich Terns predicted 

using a GAMM, for boat-based transect surveys of the Race Bank, Docking Shoal, LID 
and Lincs wind farm areas. 

 
The best model for abundance data included distance to colony (edf. 7.77, P < 0.0001), “Northness” 
(edf. 5.96, P <0.0001) and wave shear bed stress (edf. 1.00, P 0.0092) as smoothed terms and summer 
front frequency (coef. -0.014 ± 0.004, P = 0.0031) as a linear term. Foraging was concentrated in 
areas within 10 km of the breeding colony in areas with a low summer front frequency and in 
relatively flat areas with low levels of wave stress (Figure 3.15). The model severely under-predicted 
the abundance of foraging Sandwich Terns within the transect areas (Figures 3.12b & 3.13b).  
 
3.3.2.2 Maximum Entropy 
 
The final MaxEnt model for the transect data had a mean AUC value of 0.958 (± 0.016) Salinity and 
distance to colony were highlighted as the most important variables. The probability of foraging birds 
being observed was greatest in areas that were within 10 km of the breeding colony and in which 
salinity values were between 33 and 33.5 (Figures 3.16 & 3.17). Other variables indicated that the 
probability of foraging birds being observed was limited to water with a depth of no more than 10 m 
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and was greatest in warmer water with had weak currents and a low level of temperature stratification 
(Table 3.3). The model proved a reasonable fit for the data although it had a tendency to over-predict 
distributions.  
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Figure 3.14 Smoothed terms from presence-absence Generalised Additive Mixed Model for 
Sandwich Tern Foraging locations from boat-based transect surveys of the Race Bank, 
Docking Shoal, LID and Lincs wind farm areas. 
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Figure 3.15  Smoothed terms from abundance Generalised Additive Mixed Model for Sandwich 

Tern Foraging locations from boat-based transect surveys of the Race Bank, Docking 
Shoal, LID and Lincs wind farm areas. 
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Figure 3.16  Probability of Sandwich Tern foraging activity as predicted using a MaxEnt model for 

boat-based transect surveys of the Race Bank, Docking Shoal, LID and Lincs wind 
farm areas. 

 

 

 

 
 
Figure 3.17  Mean response curves for each of the variables included in the final MaxEnt model for 

foraging locations of Sandwich Terns within the Race Bank, Docking Shoal, LID and 
Lincs wind farm areas: April Temperature (apr), Current Shear Bed Stress (current), 
Distance to Colony (colony), Depth, Salinity (salin), Temperature Stratification (strat). 
Red lines indicate mean value from 25 model replicates, blue lines indicate the standard 
deviation of these replicates. 
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3.4. Discussion and Conclusions 

For the tracking dataset, there was a reasonable degree of consistency between the results from the 
GAMMs and the MaxEnt. Both methodologies highlighted a core area in which the probability of 
encountering a foraging bird was highest close to the colonies. The major differences in the predicted 
probability of encountering foraging birds between GAMMs and MaxEnt models were observed at 
greater distances from the colony within areas in which the probability of foraging was low.   
 
For both the tracking data and the transect data, MaxEnt models provided more accurate predictions 
of foraging locations used by Sandwich Terns than GAMMs. In particular, GAMMs performed 
poorly for the transect data. In general, GAMMs tended to under-predict the distribution of foraging 
areas whereas MaxEnt models tended to slightly over-predict the distribution of foraging areas.  
 
Table 3.3  Relative contribution of explanatory variables in the MaxEnt model of all Sandwich 

Tern foraging locations recorded during boat-based transects of the Race Bank, 
Docking Shoal, LID and Lincs wind farm areas. 

 

Variable Percent contribution Permutation importance 

Salinity 33.5 19.5 

Distance to Colony 32.2 58.5 

Temperature Stratification 12.9 9.1 

Depth 7.9 3.8 

April Temperature 7.8 4.5 

Current Shear Bed Stress 5.7 4.5 

 
Models for tracking data performed reasonably in predicting likely foraging areas. Distance to colony 
was consistently identified as an important explanatory variable by both the GAMMs and the MaxEnt 
models. Results from GAMMs were consistent between colonies and years with all three models 
showing a significant relationship with distance to colony and with salinity, or with temperature 
which was significantly correlated with salinity.  
 
MaxEnt models were found to have a greater predictive ability than the GAMMs in the analysis of the 
tracking data. Despite this, there were a number of similarities in the variables identified as important. 
Distance to colony was again highlighted as a key variable, with few birds feeding in excess of 10 km 
from the colony. Furthermore, the MaxEnt models highlighted the same salinity values of around 33-
33.5 as were identified by the GAMMs using data for birds from Scolt Head in 2007 and both 
colonies in 2007. These salinity values are similar to those identified as preferential for the sandeel 
Ammodytes marinus, a key prey species for Sandwich Terns (van der Kooij et al. 2008). The MaxEnt 
model appeared to identify a shift in foraging areas used by birds from the Scolt Head colony between 
2006 and 2007. However, this may be the result of individual differences in the birds being followed, 
and potentially an issue related to the sample size of the tracked birds.  
 
Models for the transect data did not perform as well as those for tracking data. In part, this may be 
because the areas covered by the transects are not as widely used by individuals breeding at the Scolt 
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Head and Blakeney Point colonies as nearer shore areas. Models for the tracking data consistently 
identified distance to breeding colony as a key explanatory variable, with most individuals foraging 
within areas that were within 10 km of the breeding colony. The area covered by the transects is 
mostly well in excess of 10 km from either Scolt Head or Blakeney Point breeding colony.  
 
It has previously been suggested that habitat heterogeneity may decrease as distance offshore 
increases (Reise & Bartsch 1990). It may be that there is a lower level of habitat heterogeneity within 
the transect areas as they are at a greater distance offshore than the areas covered during the tracking 
studies. A lower level of habitat heterogeneity would make it harder to differentiate between areas 
that were used for foraging and those that were not. Certainly, initial exploratory analysis at a 1 km², 
5 km² and 10 km² resolution failed to reveal significant differences between variables within areas 
which were used for foraging and those which were not. No further exploratory analyses were 
conducted. 
 
Whilst the foraging areas identified using the tracking data were concentrated around the coast, those 
identified using the transect data were concentrated in a more central location offshore. There are 
likely to be a number of reasons for this. Firstly, unlike the tracking data the months covered by the 
boat-based surveys extend outside the nesting period. Post-fledging, birds may change their foraging 
behaviour as they are no longer constrained by the need to return to their nest site. Furthermore, the 
distance between the study colonies and the transect areas is at the limit of the typical foraging range 
for the Sandwich Tern (Thaxter et al. submitted.). As such, it is likely that a number of the birds 
observed foraging within the transects may be non-breeders, or from different breeding colonies. 
Finally, it is possible that since foraging has only been observed in a relatively small number of 1 km 
squares over a number of years, the model coefficients may be unduly influenced by the values from 
these squares such that when applied to predictions over a wider area they fail to accurately identify 
areas outwith the initial extent of the survey. 
 
MaxEnt models show a greater predictive ability, and may therefore provide a better framework for 
predicting the distribution of Sandwich Tern foraging areas than GAMMs. MaxEnt models were 
remarkably consistent between colonies and years, with models for individual colonies all identifying 
foraging areas as being likely to be within 10 km of the colony, over water that was no more than 10 
m deep and had salinity values of around 33-33.5. These characteristics were also highlighted by 
some of the GAMMs applied to tracking data. It should be noted that the models describe the realised 
niche of foraging sandwich terns as opposed to the fundamental niche of foraging sandwich terns. In 
practical terms this means that the birds forage over an optimal proportion of the total available 
habitat. In particular, the distance over which Sandwich Terns forage identified in these models is 
likely to be an under-estimate of the maximum distance over which they could potentially forage. The 
model utilising data from both colonies and both years is likely to be more valuable in applying 
predictions to other areas than any of the models using data from individual colonies and years as it 
makes use of more information and is consequently likely to prove more robust.  
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4. GENERAL DISCUSSION AND CONCLUSIONS  

This study has identified and implemented suitable approaches for modelling the at-sea foraging 
distribution of Sandwich Terns breeding in the North Norfolk Coast SPA, specifically for two 
colonies within the SPA: Blakeney Point and Scolt Head. After a thorough literature review, we 
applied two approaches (GAMMs, and Maximum Entropy) using data collected on the species’ 
foraging locations from that SPA and associated environmental datasets. These methods have 
previously been demonstrated as highly applicable to these types of data. 
 
As summarised in section 3.4, MaxEnt performed better than GAMMs providing more accurate 
predictions of foraging locations of Sandwich Terns, albeit with slight over-predictions. In contrast, 
tended to under-predict the distribution of foraging areas. The under-prediction of foraging areas by 
GAMMs is of greater concern than the over-prediction of foraging areas by MaxEnt. Primarily, this is 
due to the severity of this under-prediction, but also because: (1) these models may be used to identify 
potential marine extensions to existing SPAs, and such a conservative approach which results in all 
foraging habitat used being protected is preferable to an approach that results in an area that is too 
small being protected, and (2) because only a subset of individuals from each colony were observed it 
is likely that a wider area is used than was recorded during this study. 
 
An advantage of MaxEnt is that it provides clean, effective model fits, and can also handle small 
sample sizes (Phillips et al. 2006, Shipley et al. 2006, Wisz et al. 2008, Kumar & Stohlgren 2009). 
MaxEnt also seems particularly well suited to species that are not stationary, temporarily absent, and 
seems to work well with fewer observations in a large area of suitable habitat. These points may also 
offer explanations for better model fit for MaxEnt. Furthermore, MaxEnt may have picked up more 
complex relationships between the distributions and the environmental variables than GAMMs. 
Whilst for MaxEnt it is not always as intuitive as GAMMs, it may provide a better framework for 
modelling the distribution of Sandwich Tern foraging areas, and produce predictions that are more 
readily transferable between areas.  
 
In comparing predictions of foraging locations from models using tracking and transect data some 
similarities were evident for MaxEnt models. However, models based on transect data missed areas 
that were closer to the colonies that were identified by MaxEnt. Nevertheless we suggest caution 
when comparing these methods, not least because transect data may include a proportion of birds that 
may not be breeders – indeed most survey transects were located further away from the colonies than 
the more extreme edges of the visual-tracking ranges.  
 
A number of limitations were identified with the datasets used. In particular, the observed 
distribution, both from the tracking data and also from the transect data, may not necessarily be an 
accurate representation of the habitat requirements for Sandwich Terns because occupancy does not 
necessarily translate into selection (Beyer et al. 2010). This issue is particularly pertinent for the 
transect data, thus we distinguished between areas actively selected for foraging, and those that were 
used incidentally (e.g. during transit). Furthermore, for the tracking data, it was not possible to 
distinguish between the species’ realised niche, the optimal area in which the species was found, and 
the species’ fundamental niche. Consequently, the models are likely to represent habitats optimally 
selected, rather than the full range at their disposal. As such, this approach should still be used with 
caution if the models are to be used to provide predictions at other sites, and would need to be 
validated with further observed data. Finally, the models here assume static habitat selection through 
time, which may not necessarily be the case for variables such as temperature, salinity gradients that 
can very over time throughout the season. Dynamic oceanographic modelling is another option (e.g. 
Skov et al. 2008; Schwemmer et al. 2009), which incorporates the changing nature of oceanographic 
input variables to predict species distributions across ranges in these variables (for instance across 
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tidal states, eddies, velocity and flow components). Such an approach should also be considered in 
future modelling. 
 
In this study, we also suggested trialling a third technique: Multi-adaptive Regression Splines 
(MARS) is a technique which has also been successful applied elsewhere, including modelling of data 
of foraging terns from their colonies (e.g. Heinänen et al. 2008). However, eventual time constraints 
prevented investigation of the method. We would therefore recommend further study of this 
technique to these data. Other techniques such as regression trees were not tested here, mainly due to 
likely intensive computer time and time limitations. However, these techniques could also be fully 
applied to these data, and are currently being trialled at the BTO for other distributional data. A full 
comparison of all methods is rare in the literature, but would be highly valuable in this instance given 
the importance of selecting the most appropriate areas for SPA extensions.    
 
MaxEnt was the preferred modelling framework in this study. However, we would also recommend 
that in any future modelling study, multiple statistical approaches should be tested.  The results 
presented here are encouraging and will not only help Natural England in the identification of a 
possible extension to the North Norfolk Coast SPA, but also inform on JNCC’s anticipated UK-wide 
approach for identifying marine extensions to breeding seabird colony SPAs.  
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